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ABSTRACT: The present paper deals with the determination of the unknown temperature, displacement and 

stress functions on the upper plane surface of a finite length hollow cylinder when the interior third kind 

boundary condition is known. Initially the plate is kept at zero temperature. A complete evaluation of 

temperature and stress distributions in a transient state is obtained using finite Marchi-Zgrablich and 

Laplace transform techniques. The results are obtained in series form in terms of Bessel’s functions. The 

results for displacement and stresses have been computed numerically and illustrated graphically. 

Key Words: Hollow cylinder, transient problem, thermoelastic problem,  Marchi-Zgrablich-Laplace transform. 

I. INTRODUCTION 

The inverse thermoelastic problem consists of the 

determination of the temperature of the heating medium 

and the heat flux of a solid when the conditions of the 

displacement and stresses are known at some points of 

the solid under consideration. This inverse problem is 

very important in view of its relevance to various 

industrial machines subjected to heating such as main 

shaft of lathe and turbine and roll of a rolling mill. 

        In the works of Grysa and Cialkowski [1] and 

Grysa and Kozlowski [2], one dimensional transient 

thermoelastic problems are considered and  the heating 
temperature and the heat flux on the surface of an 

isotropic infinite slab are derived. In the works of 

Khobragade and Wankhede [3], two dimensional 

steady-state thermoelastic problem is considered and 

the heating temperature, displacement and thermal 

stresses are derived. Singru [8] investigated thermal 

stress of a thick hollow cylinder. Evgeniy Dats [9] 

calculated the residual stresses of hollow cylinder under 

unsteady thermal action. Iryna Rakocha Popovych [10] 

developed the mathematical modeling and investigates 

the stress strain state of the three layer thermo sensitive 

hollow cylinder. 
In the present problem an attempt is made to study the 

inverse transient thermoelastic problem to determine 

the unknown temperature, displacement and stress 

functions of the cylinder occupying the space 

{ }hzbyxaRzyxD ≤≤≤+≤∈ 0,)(:),,(: 2/1223
 

with the known interior third kind condition. The finite 

Marchi-Zgrablich and Laplace transform techniques are 

used to find the solution of the problem. Numerical 

estimate for the temperature distribution on the upper 

plane surface is obtained. A brief note contains relevant 

results of the transform, although elementary, are not 

easily found in textbooks provided in Appendix.  

II. FORMULATION OF THE PROBLEM 

 Consider a hollow cylinder of length h occupying the 

space D. The differential equation governing the 

displacement function φ ( r,z,t), where 
2/122 )( yxr +=  is  

 Θ
−

+
=∇ tα

ν

ν
φ

)1(

)1(2
                                      ...(1) 

with   φ = 0 at r = a and r = b                               ...(2) 

where 
2

2

2

2
2 1

zrrr ∂

∂
+

∂

∂
+

∂

∂
=∇  

where ν and tα  are the Poisson’s ratio and the linear 

coefficient of thermal expansion of the material of the 

cylinder respectively and Θ  is the temperature of the 

cylinder satisfying the differential equation 

 

 

International Journal of Theoretical & Applied Sciences,       9(2): 84-91(2017)    



                                                                     Kamdi, Shelare and  Yadav                                                        85
 

tkzrrr ∂

Θ∂
=

∂

Θ∂
+

∂

Θ∂
+

∂

Θ∂ 11
2

2

2

2

                                                                      ...(3) 

where k is the thermal diffusivity of the material of the cylinder,   

subject to the initial condition  

0=Θ   for all a ≤ r ≤ b, and 0 ≤ z ≤ h,                                                                                              ... (4) 

the interior condition  
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and the boundary conditions   
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The functions ),(1 tzF and ),(2 tzF  are known constants and they are set to be zero so as to obtain mathematical 

simplicities. The constants k1 and k2 are the radiation constants on the two curved surfaces. The function ),( trξ is 

assumed to be known while the function ),( trg is not. 

The radial and axial displacement U and W satisfying the uncoupled thermoelastic equations [6] are  
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   W = 
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The stress functions are given by 

 0),0,(0),,(0),,( === trrztzbrztzarz τττ                                                            ...(14) 

and   

 0),,(,0),,(,1),,( =−== thrzptzbrptzar σσσ                                ...(15) 

where p1 and p0 are the surface pressures assumed to be uniform over the boundaries of the cylinder. The stress 

functions are expressed in terms of the displacement components  
by the following relations: 
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G
is the Lame’s constant, G is the shear modulus and U and W are the displacement components. 

Equations (1) to (19) constitute the mathematical formulation of the problem under consideration [5, 6]. 

III. SOLUTION OF THE PROBLEM 

The finite Marchi-Zgrablich integral transform of )(rξ  is defined as  
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On applying finite Marchi-Zgrablich transform  and Laplace transform  to the equations (3) to (9) and then using 

their inversions, one obtain the expressions of temperature distribution and unknown temperature gradient 

respectively as  
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where n is Marchi-Zgrablich transform parameter, χ  stands for particular integral 

and is given by 

[ ]dzdzezFee
zzz nnn ∫ ∫

−= µµµχ )(
2

 

 where )()()()()( 2,2,10

2

1,2,10

1

zFbkkS
k

b
zFakkS

k

a
zF nn µµ −= ,      

nµ are the positive roots of the equation 0),,( 210 =rkkS nµ , 

∫=
b

a
drStrrtnf 0),(),( ξ , ∫=

b

a
drStrrtnu 0),(),( ξ , 

0S  is kernel of the transform,  

∫=
b

a

nn drrkkSrC
2

210 )},,({ µ  

and 
ς

π
θ

m
=  

Equations (23) and (24) are the desired solutions of the given problem with β1= β2 =1 and α1 = k1,  α2 = k2. 

IV. DETERMINATION OF THERMOELASTIC DISPLACEMENT 

Substituting the value of Θ (r,z,t) from (23) in equation (1), one obtains the thermoelastic displacement function 

φ(r, z,t) as 
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Using (25) in (12) and (13) one obtains the radial and axial displacement U and W as 
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V. DETERMINATION OF STRESS FUNCTIONS 

Using (26) and (27) in (16)  the radial stress function is obtained as 
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VI. SPECIAL CASE AND NUMERICAL RESULTS  
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VII.  CONCLUSION 

The temperature, displacement and stress functions at any point of the cylinder have been derived, when the interior 
third kind boundary condition and the other three boundary conditions are known, with the aid of finite Marchi-
Zgrablich transform  and Laplace transform techniques.  
The expressions are obtained in the form of infinite series. Any particular case of special interest can be derived by 
assigning suitable values to the parameters and functions in the expressions.  
The results presented here will be more useful in Engineering problems particularly in the determination of the state 
of strain in the cylinder constituting the foundations of container for hot gases or liquid in foundations for furnaces 
etc. 

VIII.  GRAPHICAL ANALYSIS 

Below figure shows the variation of radial stress versus z for different value of t. 
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